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A new method is presented for unravelling a periodic vector set. This method, being entirely different 
from the image seeking method or its variations, makes full and systematic use of periodic characters 
involved in a periodic vector set. The details of unravelling procedures are systematically described. 
The procedures are illustrated in a simple case, and further it is shown that the proposed procedures 
are really effective for unravelling vector sets corresponding to several hypothetical and real structures. 
In some examples, the computations including logical operations are carried out on an electronic 
computer. Some characteristics of the present method are discussed. General aspects of the phase pro- 
blem are also described from a standpoint reached through the present work. 

Introduction 

The Patterson function, P(r)=~(r)*Q(r), is a self- 
convolution, or a spatial autocorrelation function, of 
a periodic electron density Q(r) and can be derived 
directly from a set of absolute values of the crystal 
structure factors, IF(hkl)l, which are obtained from 
observed intensities. The periodic electron density 
q(r) is expressed by: 

0(r)-- X J ( r -  rt)*Quntt ten, (1) 
t 

where J is Dirac's delta function, rt means the position 
vector for the origin of the t th unit cell, and the sum is 
taken over all unit cells. When all atoms are identical 
and are supposed to be point atoms, the density in 
a unit cell is essentially given by 

N 

eunlt cell(r) = Z ~(r-- re), (2) 
i=1  

where N is the number of point atoms in a unit cell. 
It is important to study how to find out Qunit cell(r) 
from P(r) for case (2), because such a study may help 
us to solve the problem for a real crystal. In this 
special case, P(r) is called a periodic vector set and 
Q(r) a periodic fundamental set. When, on the other 
hand, Q(r) is not periodic and is expressed as 

N 

e ( r ) = X  d ( r - r 0 ,  (3) 
i = I  

the functions/'(r) and a(r) are called a finite vector 
set and a finite fundamental set respectively. 

Let us consider a finite fundamental set consisting 
of N points in an m-dimensional space, and a periodic 
fundamental set derived from the former by intro- 
ducing periodicity. The finite and the periodic vector 
sets derived respectively from the above two fundamen- 
tal sets differ from each other as follows. The finite 
vector set which consists of N 2 points including N 
points at the origin is found within a space of volume 
2 m times that of a unit cell, while the periodic vector 
set includes N 2 points per unit cell, corresponding to 

the superposition of the above finite vector sets with 
periodic lattice translations. 

The image seeking method for unravelling the 
finite vector set was first devised by Wrinch (1939), 
and later by Buerger (1950, 1959) and many others. 
Wrinch and Buerger suggested that a similar method 
might be used also to unravel a periodic vector set. 
In order to unravel a periodic vector set by this method, 
however, the patterns in a unit cell are not enough and 
those in 2 m unit cells are required. If a certain point 
takes part in image construction, 2 m -  1 points which 
are equivalent to this point but with shifts correspond- 
ing to the lattice translations cannot take part. It is 
not always easy to decide which point should be chos- 
en out of 2 m equivalent points at every stage. 

In the present paper, a new method is proposed for 
unravelling a periodic vector set. This method, being 
entirely different from the image seeking method or 
its variations, makes full and systematic use of all 
periodic characters involved in a periodic vector set. 
Merits and demerits of the both methods will be com- 
pared after the new method is described for hypothe- 
tical and real structures. General aspects of the phase 
problem will also be discussed from a standpoint 
reached through the present work. 

Theory 

A periodic fundamental set and the relevant periodic 
vector set can be specified respectively by fractional 
coordinates of each point and by corresponding 
components of interatomic vectors. The former will 
hereafter be expressed as v,(xi, yi, z~) with small letters, 
and the latter as V~j(Xtj, Y~j, Z~j) with capital letters, 
where V~ i means a vector from the ith to t h e j t h  point 
of the fundamental set. In a one-dimensional case, 
only x (or X) coordinates, and in a two-dimensional 
case, x (or X) and y (or Y) coordinates are to be 
taken into account. However, general descriptions 
will hereafter be given in a three-dimensional case, 
if not otherwise stated. 
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For V vectors, the lattice translations along Y and 
Z directions are ignored throughout the present work. 
In other words, only fractional parts are taken into 
consideration for Y and Z components of a vector, 
whereas its X component holds its usual meaning in 
full. According to this definition, it follows that 
vectors, for example, V(X, Y, Z), V'(X,  Y, Z +  1) and 
V"(X, Y+ 1, Z) are taken to be identical with one 
another but to be different from a vector V " ' ( X +  1, 
Y, Z). 

Let us specify N points of a periodic fundamental 
set, in a unit cell lying in 0 < x <  1, by numbers 0. 
1, 2 . . . .  , N -  1 in the order of increasing x coordinates, 
In a similar way, N points in a unit cell lying in 
1 < x < 2 are specified by numbers N, N +  1 , . . . ,  2 N -  1. 
Points p and p + N are correlated with each other by a 
lattice translation a in the x direction. If two or more 
points happen to have the same x coordinate, their 
order should be decided according to their y and 
z coordinates. 

The vector V~, ~o+n from a point p to a point p + n  
is called an nth nearest neighbour vector (hereafter 
abbreviated to an nth n. n. vector), though the meaning 
of the word nearest is here limited to the plus x direc- 
tion. This vector will be often denoted as V~(n), while 
the notation, V(n) without suffix, means an nth n. n. 
vector in general. 

Every V~o(n) vector is a member of the periodic 
vector set which includes N 2 vectors per unit cell. 
Therefore, these N z vectors, say in a region O < X <  1, 
can be classified into N g r o u p s o f  nth n. n. vectors 
according as n ranges from 0 to N -  1, and each group 
contains N member vectors. 

The numbering of V vectors, and accordingly the 
classification of V vectors, depends upon the choice of 
the coordinate system. In any case, however, the fol- 
lowing relations are valid among the vectors V~(n). 

(A) A vector V~(n) with n > 1 can be decomposed as 

Vt(n) -- Vi(1) + Vi+,(n - 1) 
= V i ( n -  1) +V~+n-l(1) 
= Vl(1) + Vl+l(1) + . . . . .  + Vl+n-l(1) • 

(A') A vector Vi(1) cannot be decomposed any 
further, so long as trivial zero vectors V(0) are dis- 
regarded, although some V(1) vectors may happen to 
coincide with the sum of other vectors. 

(B) The total sum over all members of V(n) is iden- 
tical with n times the unit translation along the X axis. 

(B') As a special case of (B), XVv(1)=(1 ,  0, 0). 
v 

The problem of unravelling a given vector set is 
to determine indices p and n of all Vv(n) vectors. The 
indexing of p and n can be done by use of the recur- 
rence relations (A). In reality, it is sufficient to deter- 
mine the index p of all Vv(1) vectors, because it is 

possible to deduce the indices p of Vv(n) for n >  1 
from those of Vv(1). The indexing o f p  for Vv(1) can 
be done by successively utilizing the recurrence for- 
mulae for V(n) up to a certain value n=q. This critical 
q value depends upon each vector set. It is generally 
as small as 2 as shown later in Examples 2 and 3 but 
sometimes as large as 7 as shown in Example 4. 

In the following, systematic procedures for unravel- 
ling are described in a general form, though there may 
be a more efficient strategy with minor modifications 
depending upon each problem. It will be shown that 
the above general relations (A), (A'), (B) and (B') are 
a set of clues satisfactory enough to unravel a given 
periodic vector set, after vectors being arranged in the 
order of increasing X components. 

(I) The way of  determining the V (1) vectors 
(Ia) Picking up V(1) vectors. There are N V(0) 

vectors at the origin, which need not be searched for. 
Apart  from them, the V(1) vectors will be found 
mostly among those with small X components. The 
relation (A') gives the useful information that if a 
member of a vector set proves to be different from the 
sum of any non-zero vectors, this member is certainly 
a V (1) vector. Therefore, the two vectors with smallest 
X components are certainly V(1) vectors. Other V(1) 
vectors can be picked up by testing one by one whether 
each vector is different from the sum of any other 
vectors with smaller X components. 

In a favourable case, all V(1) vectors may be picked 
up uniquely in this way. If N V(1) vectors thus picked 
up prove to satisfy the relation (B'), we can go on to 
procedure (II). 

(Ib) Searching for hidden V(1) vectors. In an 
unfavourable case, it may happen that some genuine 
V(1) vectors are hidden by accidental coincidences 
with the sum of other vectors, as was mentioned in the 
relation (A'). If this is the case, the number of V(1) 
vectors which can be picked up in the above way is 
less than N, and naturally the X component of their 
total sum is less than unity. Since, however, the number 
of hidden V(1) vectors is known, they can be picked 
up from V's  in the vector set by testing all possible 
combinations satisfying the relation (B'). If it happens 
that more than one set passed through this test, then, 
all sets found out are to be subject to the following 
procedures. 

(II) Finding out V(2) vectors by a consistency check 
(IIa) Picking up V(2) vectors. When a vector is 

found to be the sum of two V:o(1) vectors, it is clear 
from relation (A) that the former is one of V(2) vec- 
tors, provided there is no haphazard coincidence, and, 
at the same time, that the latter two vectors are 
neighbours among the V(1) vectors. 

(IIb) Check by the number o f  vectors picked up. 
If the V(2) vectors picked up in the above are N in 
number, we can go on to procedure (IIc). It is, how- 
ever, likely that there will be more than N because of 
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haphazard coincidences. In such cases, all possible 
combinations of N V(2) vectors are chosen from them, 
and every set thus obtained is subject to procedure 
(IIc). If, on the contrary, there are less than N, the 
relevant set of V(1) vectors is considered to be an 
unreasonable one and should be discarded. 

(IIc) Check by the sum of  all vectors. A set of N V(2) 
vectors should be discarded if it does not satisfy 
relation (B). If a set survives, it should be subjected 
to procedure (lid). 

(lid) Check of  consistency. Information about 
every neighbouring pair of V(1) vectors is already 
known in procedure (IIa). In a favourable case, this 
information is enough to determine uniquely a serial 
arrangement of all V(1) vectors making 'a closed 
ring', in which each V(1) vector takes part once. In 
this case, we go on to procedure (IV), skipping 
procedure (III). When, on the other hand, a surviving 
set is easily found to make no closed ring, such a set 
can naturally be discarded. 

In case a vector set includes many vectors with the 
same components, the set often has the possibility 
of generating various closed rings. In such an unfavour- 
able case, it is better to go on to procedure (III) rather 
than examine whether each candidate set can really 
form any closed ring. 

(iII) Finding out and checking with V(n) vectors 
where n > 2. 

The procedure similar to (II) can be used for finding 
out V(3) vectors. In the procedure corresponding to 
(IIa), the V(3) vectors are found as sums of V(2) and 
V (1), and this information gives neighbouring relations 
of three successive V(1) vectors. While the procedures 
analogous to (lib), (IIc) and (IId) are carried out, some 
sets of V (1) vectors are discarded, and others employed. 
The latter is to be subjected either to the procedure 
(IV) or to the similar procedure as above but with 
V(4) vectors. Further procedures should be repeated 
with V(n) of higher and higher degree as needed. 
Thus some sets are discarded, and others are sooner 
or later subjected to procedure (IV). 

(IV) Construction of  a fundamental set 
Coordinates for members v~(xi, y,, z0 of a funda- 

mental set are now easily obtained by adding V(1) 
vectors one by one in the order in which a closed 
ring is formed. If, as a whole, only one fundamental 
set is obtained, it is certainly a right solution. When 
more than one fundamental set is obtained, however, 
it may be preferable to test further whether each 
relevant vector set is consistent with all V(n) vectors 
of higher degree, by reproducing a vector set from an 
obtained fundamental set and by comparing it with the 
given one. If more than one set should survive all 
through the tests to the end, it means that one of these 
homometric solutions is what is really being sought. 
The unravelling is thus finished. The coordinate origin 
of the fundamental set obtained does not matter. As 

is easily done, however, it may be preferable to choose 
the origin at the special position according to the 
symmetry of the fundamental set obtained. 

Application 

In this section, it is shown by several examples of ap- 
plication that the above mentioned procedures are 
really effective in unravelling various types of vector 
sets. Example 1 deals with a very simple two-dimensio- 
nal model which indicates how each procedure works. 
Other examples are more complicated. Among them, 
Examples 2 and 3 are concerned with three-dimensio- 
nal vector sets, the former with hypothetical vector sets 
and the latter with a real one. Example 4 is concerned 
with a real one-dimensional vector set which seems 
difficult to unravel by the usual image seeking method 
because of heavy superposition. In Examples 2 and 3, 
most of the procedures were carried out on an elec- 
tronic computer. 

Example 1. Illustration of  the present method by a 
hypothetical two-dimensional example 

(a) Diagrammatical procedures 
Let us consider a periodic fundamental set ~ith 

five points in a unit cell as shown in Fig. l(a). V(1) 
and V(2) vectors are shown in Fig. l(b) and (c) 
respectively, where the horizontal axis is taken as the 
special x axis. The problem is to unravel the corre- 
sponding vector set shown in Fig. 2(a) where 20=  
5 ( 5 - 1 )  field peaks are found. All five V(1) vectors are 
uniquely found out by procedure (Ia), as shown as 
A, B, C, D and E in Fig. 2(b). It may be unnecessary 
to confirm that they satisfy condition (B'). Five V(2) 
vectors are then found out by procedure (IIa); these 
are shown as F, G, H, I and J in Fig. 2(c). This has 
been done because they satisfy the property (A): 
namely, there exist relations F = A + B ,  G = B + D ,  
H = C + D, I = C + E and J = A + E. This information 
already uniquely gives a closed ring (ABDCE) 
without taking V(n) vectors with n > 3 into consider- 
ation. Thus the ordering of V(1) vectors has already 
been determined. Finally, if only we combine these 
V(1) vectors one after another corresponding to 
procedure (IV), then the fundamental set shown in 
Fig. l(a) is reconstructed. 

(b) Numerical procedures 
The unravelling procedures on an electronic com- 

puter will be used for Examples 2 and 3. Though the 
present example is naturally too simple to be unravel- 
led on a computer, an outline of the programming to 
be used for complicated cases will be easily under- 
stood by the following numerical illustration. 

The fundamental set in the present example is 
expressed, for brevity, in two decimal digits, as fol- 
lows: 

• 05, .15 .52, .28 .15, .70 .30, .35 .70, -85 



M A S A Y A S U  T O K O N A M I  A N D  S U K E A K I  H O S O Y A  911 

From these values, a vector set is produced as follows" 

0 0 .47, .13 .10, .55 .25, .20 .65, .70 
• 53, .87 0 0 .63, .42 .78, .07 .18, .57 
• 90, .45 .37, .58 0 0 .15, .65 .55, .15 
• 75, .80 .22, .93 .85, .35 0 0 .40, .50 
.35, -30 .82, .43 .45, .85 .60, .50 0 0 

All members of the vector set except V(0) vectors are 
arranged in the order of increasing X components as 
follows" 

• 10, -55 -53, .87 
• 15, .65 .55, .15 
• 18, .57 .60, .50 
• 22, .93 -63, -42 
• 25, .20 .65, .70 
• 35, .30 -75, .80 
• 37, .58 .78, -07 
• 40, .50 .82, .43 
• 45, .85 .85, .35 
• 47, .13 .90, .45 

Five V(1) vectors can be found out 
as follows" 

by procedure (Ia) 

• 10, .55 -15, .65 .18, "57 .22, .93 -35, -30 
A!I pairs of successive V(1) vectors are found by the 
relations as follows: 

(-1 O, .55) + (. 15, .65) = (.25, .20) 
(-15, .65) + (.22, . 93 )=  (.37, • 58) 
(.22, -93) + (. 18, -57) = (.40, -50) 
(. 18, .57) + (.35, .30) = (.53, .87) 
(.35, .30) + (. 10, .55) = (.45, .85) 

This information uniquely determines a closed ring 
[procedure(lid)] as follows: 

(.10, .55)-( .15,  . 65 ) -  (.22, .93) 
- ( .18 ,  .57)-( .35,  .30)-( .10,  .55) 

Apart  from a relative shift (.05, -15), the fundamental 
set can be reconstructed (procedure (IV)) as follows: 

0 0 .10, .55 .25, .20 .47, .13 .65, .70 

Example 2. Unravelling o f  a hypothetical three-dimen- 
sional vector set by use o f  a computer. 

In order to test the practicability of the present 
method in more complicated cases, some hypothetical 
three-dimensional vector sets were unravelled on an 

(a) 

(b) 

(c) 
Fig. 1. Fundamental set. 

A 

• • 
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O 

(b) 

. :  

(c) 

Fig. 2. Vector set. 
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electronic computer. The computer used was FACOM-  
202 which has about 8000 core memories and opera- 
tion time of about 60 ¢tsec. Atoms in the fundamental 
sets assumed in these examples were 15 to 55 in 
number, so that the relevant vector sets contained 225 
to 3025 points per unit cell. Coordinate values of 
atoms in the fundamental sets were taken from a 
table of random numbers and were expressed by 4 
decimal digits. 

(a) A program was devised such that the computer 
at first produced a vector set from a given fundamental 
set, then unravelled the vector set obtained, following 
the above-mentioned procedures. Because errors were 
not taken into account and, in addition, the coordi- 
nates were randomly given, it was expected that only 
a few, if any, haphazard coincidences would occur. 
Therefore the program was as simple as follows. 

The program was to find V(1) vectors by the relation 
(A') [procedure (Ia)], to take all vectors satisfying 
(A) as V(2)'s [procedure (IIa)], then to reconstruct a 
fundamental set [procedure (IV)]. More details of 
the program will be understood from the illustration 
in Example l(b). 

It was confirmed that the given sets were success- 
fully unravelled by use of this program. Naturally 
the necessary machine time including printing de- 
pended upon the number of atoms, as shown in Table 1. 

Table 1. Machine time for  unravelling a vector set 
without errors 

Number of point atoms 25 30 40 50 55 
Machine time in minutes 0.5 1 4 6 7 

(b) Since the example in (a) above without errors 
might be too hypothetical, similar computations were 
carried out by allowing for a certain amount of error 
in the vector components. 

A program was devised which first produced the 
components for each vector in a vector set, then 
introduced in each component an error. Four sets were 
derived, each with an error as indicated in Table 2, 
and they were subjected to procedures (Ia), (Ib), (IIa) 
and (IId). When a closed ring could be easily formed at 
procedure (IId), procedure (IV) immediately followed. 
In order to find other candidate sets, the similar 
procedures were repeated from (Ib), until possible 
combinations of vectors for the hidden V(1) vectors 
were exhausted. Procedure (III) was entirely omitted. 

The machine time for each case is shown in Table 2, 
where the entries marked with * mean that the num- 
ber of trials prohibitively increased because of coinci- 
dences due to errors introduced. On the other hand, 
for the cases corresponding to the filled entries, the 
machine time was not very much longer than in the 
case without errors. This is mainly because the pro- 
gram used was more elaborate than in (a). 

Every time more than N successive pairs of V(1) 
vectors were found by procedure (IIa) in the above, 

all pairs were printed out, and were later examined by 
hand to ascertain whether N pairs from among them 
could form a closed ring. This procedure, even in the 
most complicated case, took about 10 minutes until 
the set proved either to form uniquely a closed ring 
or to form none. 

Table 2. Mach&e time for unravelling a vector set 
with errors 

Number of point atoms 15 20 30 40 50 55 
Machine [ error + 1/64t 0.5 * 
time in error +!/128 0.3 1"3 * 
minutes i error + 1/256 2.5 * 

error + 1/512 5.5 10 17.3 
t Each figure means the range of errors randomly introduced 

into components of member vectors. 

Example 3. Unravelling of  the vector set for  a real 
structure. 

It was attempted to unravel a vector set based on a 
known structure in contrast with a hypothetical one, 
because random values of coordinates used in Example 
2 might make the problem unduly easy. In order to 
make this point clear, (+)-hetisine hydrobromide, 
C20H2703 N . HBr (Przybylska, 1963) was chosen as a 
real example, because it has a relatively low symmetry 
and a suitable number of atoms. When hydrogen 
atoms are disregarded, this crystal with the space 
group P21 includes two molecules of C2003NBr in a 
unit cell, which are related with each other by a screw 
axis. In the present treatment, however, the symmetry 
21 was not taken into account and each of 50 point 
atoms in a unit cell was assumed to have an equal 
weight. 

The same program as was used in Example 2(a) was 
applied to this problem, namely the machine at first 
produced a vector set from the above simplified struc- 
ture, then unravelled it. Two tries were carried out, 
each by taking either the original a or b axis as the 
special x axis. Although the b axis is parallel to the 
21 axis and the a axis is not, the machine time for 
unravelling was about 7 minutes in each case. 

In the former case, V(1) vectors include two vectors 
of (X, ½, Z) type and 24 pairs of (X, Y, Z)  and (X, 
- ¥, Z). In the latter case, V(1) vectors are 25 pairs of 
(X, Y, Z) and ( - X ,  Y, - Z )  type. When the space 
group is known beforehand and these features are 
taken into account in a program, the time for unravel- 
ling a vector set will be more or less reduced. 

Example 4. An analysis o f  a real structure, 9 6 R - S i C  
One of the authors has recently solved rhombohedral 

SiC with 96 layers in a unit cell (Tokonami, 1965). 
Example 4 deals with the unravelling of a vector set 
corresponding to this one-dimensional structure. As is 
well known, SiC with a long period is composed of 
identical SiC layers whose mode of stacking is ex- 
pressed by the A B C  notation. Since, in the present 
case, 32 layers are cyclically repeated three times accor- 
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Table 3. A list o f  a vector set 
vectors with component 49-95 are omitted, because there are two centers of symmetry at vectors with component 0 and 48. 

Number Number Number 
Component of vectors* Component of vectors Component of vectors 

0 32 17 8 33 17 
1 0 18 18 34 10 
2 10 19 6 35 10 
3 12 20 8 36 12 
4 10 21 14 37 13 
5 4 22 10 38 0 
6 26 23 10 39 23 
7 0 24 14 40 6 
8 12 25 9 41 10 
9 12 26 6 42 12 

10 10 27 15 43 12 
11 6 28 10 44 2 
12 22 29 10 45 23 
13 3 30 12 46 4 
14 10 31 15 47 11 
15 13 32 0 48 12 
16 10 

* Number of vectors corresponds to a peak height in the Patterson map. 

ding to its rhombohedra l  symmetry,  the structure is 
determined by the position of, say, A layers only. 
Therefore, it is sufficient to consider a hypothetical 
l inear crystal of  96 periodic sites, among which 32 sites 
are occupied by point atoms. The weight of  each 
vector in the relevant vector set given in Table 3 was 
obtained from the fundamenta l  set based on the sol- 
ved structure. The figures listed mean, therefore, ideal- 
ized heights of  the sharpened Patterson peaks corres- 
ponding to point atoms. 

The vector set consists of  1024 vectors in a unit 
cell, including 32 V(0) vectors. It is noted here that 
a notat ion n will hereafter be used instead of a vector 
with component  n/96. 

(1) Determination of  V(1) vectors 

All of  ten 2 and twelve 3 vectors, which cannot  be 
decomposed as the sum of shorter vectors, are ob- 
viously V(1) vectors [procedure (Ia)]. The rest of  
V(1) vectors should be 3 2 - 1 0 - 1 2  = 10 in number,  and 
their sum must  be 9 6 - ( 2  x 10+3  x 12)=40.  Therefore, 
ten 4 vectors were uniquely identified to be V(1)'s. 
These results are listed in Table 4. 

Table 4. V (1) vectors 

Number 
Component of vectors 

2 10 
3 12 
4 10 

(2) Determination o f  V(2) vectors 

There are six possibilities of  combining two V(1) 
vectors as follows [procedure (Ila)]: 

2 + 2 = 4 ,  2 + 3 = 5 ,  2 + 4 = 6 ,  
3 + 3 = 6 ,  3 + 4 = 7 ,  4 + 4 = 8 .  

Let numbers  of the V(2) vectors corresponding to 
these combinat ions  be a(4), b(5), c(6), . . .  , f (8)  respect- 

ively. Now that the shortest 32 vectors next to V(1) 
vectors in Table 3, namely all 5 and 6 vectors and two 
out of  twelve 8 vectors, make just  2 x 96 in total, they 
are V(2) vectors. It follows from Tables 3 and 4 that  

a (4 )=0 ,  b(5)=4,  c(6)+ d (6 )=  26, 

e(7) = 0  and f (8)  =2 .  

Since 32 V(1) vectors should be included in 32 V(2) 
vectors twice for each, it holds that 

2a(4) + b(5) + c(6)= 10 x 2, b(5) + 2d(6) + e(7) 

= 12 × 2 and c ( 6 ) + e ( 7 ) + 2 f ( 8 ) =  10 × 2. 

These eight simultaneous l inear indeterminate equa- 
tions should have non-negative integral roots. The 
solutions are: 

a (4 )=0 ,  b(5)=4,  c(6)= 16, d (6 )=  10, 

e(7) = 0 and f ( 8 ) =  2, 

as shown in Table 5. 

Table 5. V(2) vectors 

Number 
Component Composition of vectors 

5 2+3 4 
6 2+4 16 
6 3+3 10 
8 4 + 4  2 

(3) Determination of  V(3) vectors 
Each V (3) vector can be considered as a combinat ion  

of  two V(2) vectors which include a V(1) vector in 
common.  Thus, i f  we combine two vectors, for instance 
2 + 3 and 2 + 4, so as to make a vector 3 + 2 + 4, then 
the latter vector is a V(3) vector. Two vectors 2 + 3  
make either 2 + 3 + 2 or 3 + 2 + 3. In this way, it was 
easily found from the composit ion in Table 5 that  
the following nine combinat ions  are possible for 
V (3) vectors: 
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2 + 3 + 2 = 7 ,  3 + 2 + 3 = 8 ,  2 + 4 + 2 = 8 ,  

2 + 3 + 3 = 8 ,  3 + 2 + 4 = 9 ,  3 + 3 + 3 = 9 .  

4 + 2 + 4 = 1 0 ,  2 + 4 + 4 = 1 0 ,  4 + 4 + 4 = 1 2 .  

Let the numbers of  these combinat ions be a', b ' , . . . ,  i '  
respectively. Now the sum of the shortest 32 vectors 
next to V(2) vectors is just  3 × 96, therefore, these are 
V(3) vectors. F rom Tables 3, 4 and 5, it follows that  

a'=O, b ' + c ' + d ' =  10, e ' + f ' =  12, g '+h '=  10 

and i'=O. 
On the other hand, each V(2) vector must appear 
twice. Therefore, 

2a' + 2b' + d' + e '=4 × 2, 

2c '+e '+2g '+h '=  16 x 2, 

d ' + 2 f ' = l O × 2 ,  
and h '+2 i '=2  × 2. 

Two sets of  solutions were obtained from these nine 
equations, and are shown in Table 6. 

Table 6 . 7 ( 3 )  vectors 

Number 
Component Composition of vectors 

8 3 + 2 + 3  0 3 
8 2 + 4 + 2  6 7 
8 2 + 3 + 3  4 0 
9 3 + 2 + 4  4 2 
9 3 + 3 + 3  8 10 

10 4 + 2 + 4  6 6 
10 2 + 4 + 4  4 4 

(4) Determination of  V(4) vectors 

There are the following ten possible combinat ions 
for 7 (4)  vectors: 

2 + 3 + 3 + 2 ,  2 + 3 + 3 + 3 ,  3 + 3 + 2 + 3 ,  

2 + 4 + 2 + 3 ,  3 + 3 + 2 + 4 ,  2 + 4 + 2 + 4 ,  

3 + 3 + 3 + 3 ,  2 + 4 + 4 + 2 ,  3 + 2 + 4 + 4 ,  

4 + 4 + 2 + 4 .  

Possible sets of  V(4) vectors satisfying the relation 
(A) are 6, 22, 2, 2, 0 or 6, 22, 3, 0, 1, in number,  of  the 
vectors 11, 12, 13, 14 and 15 respectively. However, 
the latter cannot  be allowed because the longest vector 
should be 14 in the above listed ten. Therefore, the 
indeterminate equations for the former are to be 
solved in both  cases corresponding to the two sets 
of  V (3) vectors. In the first case no solution was found, 

and the second case gave only one solution shown in 
Table 7. 

Table 7 . 7 ( 4 )  vectors 

Component 
11 
11 
12 
12 
12 
12 
13 
14 

Number 
Composition of vectors 
2 + 3 + 3 + 3  4 
2 + 4 + 2 + 3  2 
3 + 3 + 2 + 4  4 
2 + 4 + 2 + 4  10 
3 + 3 + 3 + 3  6 
2 + 4 + 4 + 2  2 
3 + 2 + 4 + 4  2 
4 + 4 + 2 + 4  2 

(5) Consistency among higher order vectors 
7(5) ,  V(6) and 7(7)  vectors were obtained in a 

similar way, as shown in Tables 8, 9 and 10, where 
only the sets marked with * could survive. Finally, 
V(7) vectors uniquely determined the following ar- 
rangement  of  32 layers: 

2 + 3 + 3 + 3 + 2 + 4 + 2 + 4 + 2 + 4 + 2 + 4 + 4 + 2 + 3  

+ 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 2 + 4 + 4 + 2 + 4 + 2  

+ 4 + 2 + 4 .  

Table 8. V (5) vectors 
Number 

of vectors 
Component Composition * 

13 2 + 3 + 3 + 3 + 2  1 1 1 11 
14 2 + 3 + 3 + 3 + 3  2 2 2 2 2  
14 2 + 4 + 2 + 3 + 3  01  2 3 4  
14 2 + 4 + 2 + 4 + 2  6 5  4 3  2 
15 3 + 3 + 3 + 2 + 4  4 4 4 4 4  
15 3 + 2 + 4 + 2 + 4  4 3 21  0 
15 3 + 3 + 3 + 3 + 3  5 5 5 5 5  
15 2 + 4 + 4 + 2 + 3  01  2 3  4 
16 3 + 3 + 2 + 4 + 4  4 3 21  0 
16 4 + 2 + 4 + 2 + 4  2 3 4 5  6 
16 2 + 4 + 2 + 4 + 4  01  2 3 4  
16 2 + 4 + 4 + 2 + 4  4 3  21  0 

Table 9. V (6) vectors 
Number 

of vectors 
Component Composition * 

17 2 + 3 + 3 + 3 + 2 + 4  2 2 2  
17 2 + 3 + 3 + 3 + 3 + 3  2 2 2  
17 2 + 4 + 2 + 3 + 3 + 3  4 3  2 
17 2 + 4 + 2 + 4 + 2 + 3  01  2 
18 3 + 3 + 3 + 3 + 2 + 4  2 2 2  
18 3 + 3 + 2 + 4 + 2 + 4  01  2 
18 2 + 4 + 2 + 4 + 2 + 4  8 7 6 
18 3 + 3 + 3 + 3 + 3 + 3  4 4 4  
18 2 + 4 + 4 + 2 + 3 + 3  4 3 2  
18 2 + 4 + 2 + 4 + 4 + 2  01  2 
19 3 + 2 + 4 + 2 + 4 + 4  4 2 0  
19 3 + 2 + 4 + 4 + 2 + 4  01  2 
19 3 + 3 + 3 + 2 + 4 + 4  0 1 2  
20 4 + 2 + 4 + 2 + 4 + 4  01  2 
20 4 + 2 + 4 + 4 + 2 + 4  21 0 

Table 10. V (7) vectors 
Number 

of vectors 
Component Composition * 

19 2 + 3 + 3 + 3 + 2 + 4 + 2  2 2  
20 2 + 3 + 3 + 3 + 3 + 3 + 3  2 2  
20 3+3+3+3+2+4+2 01 
20 3 + 3 + 2 + 4 + 2 + 4 + 2  2 3  
20 2 + 4 + 2 + 4 + 2 + 4 + 2  2 0  
21 4 + 2 + 3 + 3 + 3 + 2 + 4  11 
21 3 + 3 + 3 + 3 + 3 + 2 + 4  2 2  
21 3 + 3 + 3 + 2 + 4 + 2 + 4  21  
21 3 + 2 + 4 + 2 + 4 + 2 + 4  21  
21 3 + 3 ~ 3 + 2 + 4 + 4 + 2  2 3  
21 3 + 3 + 3 + 3 + 3 + 3 + 3  3 3  
21 3 + 2 + 4 + 4 + 2 + 4 + 2  2 3  
22 3 + 3 + 3 + 3 + 2 + 4 + 4  2 1  
22 4 + 2 + 4 + 2 + 4 + 2 + 4  2 4 
22 2 + 4 + 2 + 4 + 2 + 4 + 4  2 3  
22 3 + 3 + 2 + 4 + 4 + 2 + 4  2 1  
22 4 + 2 + 4 + 2 + 4 + 4 + 2  2 1  
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It was confirmed that this structure satisfies the relation 
(A) for V(n) of higher order and also that this can 
reproduce the assumed fundamental set. This con- 
firmation means that the vector set in Table 3 was 
right or at least self-consistent. No homometric mate 
was found in this example. 

Characteristics of the present method 

In this section, merits and demerits of the present 
method are described. 

(a) If the problem is concerned with unravelling a 
vector set to get a fundamental set, the following 
characteristics are to be noted. 

The image seeking method makes use of a geometri- 
cal pattern of a vector set. The present method, on 
the other hand, is an entirely analytical one which is 
more suitable for putting in a computer. 

While the image seeking method may be conveni- 
ently applied to two-dimensional work, the present 
method can be applied even more effectively to a 
three-dimensional case without any additional com- 
plexity. Y and Z components can obviously make each 
unravelling procedure very efficient, as if they gave a 
triple precision to an X-component of each vector. 

The present method allows us to choose a special 
axis x or X in different ways. This axis has only to be 
any crystallographic zone axis. In case the coordinates 
of vectors include errors, it is quite possible to facilitate 
the procedures of unravelling by trying several ways 
of choosing the X-axis. 

If a vector set to be unravelled includes points with 
heavy coincidences as in Example 4, the present me- 
thod is far more powerful than the image seeking 
method and its variations. 

Although information about a partial structure, for 
example, about a benzene ring, any radical or about 
an interatomic distance between heavy atoms, can 
be a valuable clue for unravelling a structure by the 
image seeking method, it cannot readily be utilized 
in the present method. This method, however, is 
effective for structures such as contain no heavy 
atoms or have an unknown molecular form. 

Because all atoms in a unit cell were taken to be 
independent in the present work, it does not seem 
convenient to make full use of the information known 
about the symmetry elements of the relevant space 
group. However, the procedures will probably be accele- 
rated to some extent, if the general program is modified 
so as to take this elaboration into account. 

(b) The following comments should be made as 
to the applicability of the present method to a Patter- 
son map, although these will be discussed later from 
a wider point of view. 

When there is a broad peak consisting of many 
unresolved peaks, only the information about the 
number of individual peaks is sufficient to unravel the 

vector set. For the present method to be effective, 
however, all true peaks in a given map should be 
found out correctly, though coordinates of every 
point are allowed to have errors to some extent. 
Even a few false peaks mistaken for true ones will 
make the unravelling almost impossible. On the other 
hand, the image seeking method is not much disturbed 
by so few mistakes. 

(c) Lastly, it should be mentioned that the present 
method may be quite useful to check quickly, prefer- 
ably on a computer, whether a solved structure has 
any homometric mate or not. 

Theoretical aspects of the phase problem 

In this section, some general aspects of the phase 
problem as seen from the standpoint of the present 
work, will be mentioned. 

The procedure of the structure analysis is outlined 
by a scheme as shown in Fig. 3, where solid arrows 
represent operations which can be readily carried out 
and broken arrows those which can not. The Patterson 
function P(r)  is readily obtained from all observed 
data, IF(h)[ 2, and the electron distribution Q(r) can be 
readily obtained from F(h) values including their 
phases. In order to get 0(r), it is necessary either to 
find phases of F(h)'s by any of the direct methods or 
to unravel the P(r) function. The former procedure 
is the phase problem in a narrower sense. The latter, 
however, naturally is equivalent to the former. 

The electron density 0(r) in a crystal is usually 
expressed by a sum of electron clouds around centers 
of atoms. The structure factor can, therefore, be 
expressed as F ( h ) = X f j  exp (2~zirj . h) where j~ is the 

J 
atomic structure factor of the j th  atom including its 
temperature factor, and rj is the relevant position 
vector. Since the function f3- is more or less proportional 
to an average structure factor f, F(h) may be approxim- 
ated as 

F(h)=fX ns exp (2~ir~. h) (4) 
J 

where nj means the weight of the nth atom. 
Let us consider in the following the case in which 

the use of the unitary structure factor, U(h)-- 
F(h)/fX nj, can be justified as in many direct methods. 

) 
As shown by the scheme in Fig. 4, the Fourier trans- 

[F(h)12 4- ~ P(r) 

F(h) ~ ~ Q(r) 

Fig. 3. Structure analysis procedure. 
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I U(h)l 2 

1 
U(h) 

' [ A periodic vector set I 

IA periodic fundamental setl 

Fig. 4. Fourier tranforms of U0a) and I U(h)l 2. 

form of the U0a)'s is a periodic fundamental set 
including weights for atoms and that of the I U(h)12's is 
the relevant periodic vector set. 

In the present paper, it has been shown at least in 
principle that a periodic vector set can be unravelled 
even if it involves heavy coincidences. This situation 
does not change even if point atoms in a fundamental 
set are different in weight. Therefore, the operation to 
obtain the fundamental set from a vector set can be 
represented by a solid arrow in Fig. 4. In other words, 
the operation to obtain U(h)'s from I U(h)l's should, 
in principle, give no difficulty. 

Practical limitations, therefore, come from the 
following two points: 

(1) The values of I U(h)l can be obtained only around 
the origin of reciprocal space. Even inside the limiting 
sphere, IF(h)l's may be too small to be observed. 

(2) The values IF(h)l experimentally obtained are 
inevitably influenced by a certain number of errors. 
Besides, the expression (4) can never exactly hold. 
The form factor J) cannot always be satisfactorily 
accurate. Even the same kind of atom may have differ- 
ent temperature factors, and some form factors may 
have different shapes or even anisotropy. For these 
reasons, the values of I U(h)l bear a fairly large amount 
of error. 

The limitation (1) is essentially concerned with the 
problem of the resolution due to the termination 
of the Fourier or Patterson synthesis. It is generally 
believed that the resolution in the Fourier map and 
the Patterson map is of the order of the wavelength 
of the radiation used, and that over-sharpening is 
harmful because of increasing ripples. However, a 
knowledge of the shape of electron distribution in 

each atom is usually available beforehand with reason- 
able accuracy. Thus, if we take this knowledge into 
account, the resolution can be substantially higher 
than usually considered. As will be discussed elsewhere 
in detail, the limitation (1) does not seem to be so 
severe. 

As regards limitation (2), the problem will be under- 
stood in the following way. A set of accurate values of 
I U(h)l in the observable region usually offer redundant 
information for uniquely determining the structure. 
If errors accompanying them become larger, the re- 
dundancy becomes smaller. If errors as a whole 
exceed critical values, a set of IU(h)rs either has no 
plausible solution, or occasionally give a false struc- 
ture, so that the structure analysis becomes impossible. 
However, it is difficult to assess the critical values of 
errors. 

In favourable cases, it is possible to recover the true 
values of I g(h)l from the observed I g(h)l 's which are 
disturbed by errors. In the case of 96R-SiC shown in 
Example 4, SiC layers have fractional coordinates of 
special values, multiples of 1/96, and the U(h) values 
of this crystal are therefore periodic in the reciprocal 
space. In such a special case, it can be shown that 
there is a way to recover the true values of I g(h)l even 
if the errors are rather large. The details will be re- 
ported in another paper (Tokonami, 1965). 

It will be understood how the problem is made easier 
by information about electron distribution around 
each atom or about the atomic structure factor as 
well as by accurate observed values of IF0a)]. It may 
be worth while to investigate under what conditions 
the crystal analysis becomes impossible because of the 
two limitations. 

The authors are very much indebted to Prof. Miyake 
for his interest and encouragement. 
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